
MetaPortal Module API

Thorsten Kunz

December 9, 2003

Contents

1 Introduction 4
1.1 Modules . 4
1.2 Roles . 4
1.3 User Attributes . 5

2 Directory Structure 6
2.1 General . 6
2.2 root . 6
2.3 share/ . 6
2.4 themes/ . 6

2.4.1 themes/<THEMENAME>/ 6
2.4.2 themes/<THEMENAME>/graphics/ 7
2.4.3 themes/<THEMENAME>/lang/ 7

2.5 includes/ . 7
2.6 sql/ . 7
2.7 libs/ . 7

3 Files 8
3.1 module.php . 8
3.2 module.conf . 8

3.2.1 mod version . 8
3.2.2 default lang . 8
3.2.3 languages . 8
3.2.4 default theme . 8
3.2.5 deps . 8

3.3 roles.conf . 9

4 Framework Objects and Classes 10
4.1 $GLOBALS[’mp log’] . 10

4.1.1 $GLOBALS[’mp log’]→log($level, $source, $text) . . . 10
4.2 $GLOBALS[’mp sql’] . 10

4.2.1 $GLOBALS[’mp sql’]→readQuery($query, $retval) . . 11

1

4.2.2 $GLOBALS[’mp sql’]→writeQuery($query) 11
4.2.3 $GLOBALS[’mp sql’]→countQuery($query, $retval) . 11

4.3 $GLOBALS[’mp session’] . 12
4.3.1 $GLOBALS[’mp session’]→getOrgId() 12
4.3.2 $GLOBALS[’mp session’]→getUserId() 12
4.3.3 $GLOBALS[’mp session’]→getStatus() 12
4.3.4 $GLOBALS[’mp session’]→hasRoleTag($tags, [$mod-

name]) . 13
4.3.5 $GLOBALS[’mp session’]→getAction() 13

4.4 $GLOBALS[’mp user’]→getAttribute($tag) 13
4.5 $this . 13

4.5.1 $this→getIncPath() 14
4.5.2 $this→getGfxUrl() . 14
4.5.3 $this→getGfxPath() 14
4.5.4 $this→getShareUrl() 14
4.5.5 $this→getSharePath() 14
4.5.6 $this→getLang() . 14

4.6 $smarty . 15
4.7 Misc class . 15

4.7.1 Misc::varEval($variable, $pattern) 15

5 Variables 16
5.1 MetaPortal . 16

5.1.1 $data[module] . 16
5.2 Smarty . 16

5.2.1 {$PHP SELF} . 16
5.2.2 {$GFX DIR} . 16
5.2.3 {$LANG} . 17
5.2.4 {$SHARE DIR} . 17
5.2.5 {$LANG} . 17

5.3 Forbidden Variables . 17
5.3.1 mp * . 17

6 JavaScript 18
6.1 Functions . 18

6.1.1 mpAskLink(link, question) 18
6.1.2 mpProtectSubmit(button, [caption]) 18
6.1.3 mpBlockSubmit . 18

6.2 Variables . 18
6.2.1 mpFormErrorMsg . 19

2

7 Constants 20
7.1 Eval constants . 20

7.1.1 MP VAR USERNAME 20
7.1.2 MP VAR ORGNAME 20
7.1.3 MP VAR PASSWORD 20
7.1.4 MP VAR INTEGER 20
7.1.5 MP VAR MODNAME 20
7.1.6 MP VAR ROLETAG 20

7.2 Log constants . 20
7.2.1 MP LOG DEBUG . 21
7.2.2 MP LOG INFO . 21
7.2.3 MP LOG NOTICE . 21
7.2.4 MP LOG WARNING 21
7.2.5 MP LOG ERR . 21
7.2.6 MP LOG CRIT . 21
7.2.7 MP LOG ALERT . 21
7.2.8 MP LOG EMERG . 21

8 Appendix 22
8.1 Sample module.php . 22

3

1 Introduction

This is supposed to be a documentation for MetaPortal Module Developers.
It describes the basic interfaces provided by the framework and contains
informations about how to use them. With the informations provided here
you should be able to write you first modules within a short amount of time.
If you want to use more complex modules and access more of the provided
libs you shoudl read the source! The framework and thus the module API
heavily uses Smarty templates and the pear database abstraction. You can
find dokumentation for these additional packages at http://smarty.php.net
for the smarty template engine and at http://pear.php.net for the pear docs.
If you don’t know them yet we highly recommend you take a brief look at
them before you continue here. Else you might have a few problems to
understand some points of the api.

1.1 Modules

A module can be considered as the part of a page that provides the interest-
ing functionality. The framwork takes care about users/groups/permissions
ans all the stuff you need in almost every functionality. So a module pro-
grammer can take advantage og the API and just use them in ever module
without the need to worry about it every time and time again. Also over
time there will be various public modules provided by other programmers
who had to face the same problem as you do. So you can just drop the
module in and use it without the need to write it from the scratch.

1.2 Roles

Roles are used to assign users to a group with in most cases higher permis-
sions than the default user possesses (eg. admins, etc.). MetaPortal does
not use something like numerical userlevels but role tags to look if a user has
access to special functions. There are some roles that are needed by Meta-
Portal itself and thus are available right from the very first minute. But
they are almost all used to assign administrative tasks concerning Meta-
Portals settings and maybe not of any need by module programmers. If
you’re adding modules to MetaPortal you will need to add some new roles
to give users access to the functions within your module (eg. a news module
might need roles like editor, reporter, editor in chief, etc.). So you have to
tell MetaPortal in your roles.conf file which role tags are needed by your
module. As soon as a module is loaded into an organization MetaPortal
will take care about installing the roles by making them available in the
user/group administraion for assignment. The useradmins or superadmins
have to take care then which users/groups should be assigned to which role.
In the next section of this manual you can read how you can check if the

4

current user/session has a special role tag assigned.

1.3 User Attributes

Like within every major application it is not enough to just know a users id or
loginname. There are a bunch of other informations that maybe of interest
for your module. This can be the users EMail address or the users surname.
MetaPortal calls these informations attributes. There is an infinite mass of
different attributes that might be needed. Every single module might need
an attribute that is only needed by itself and no other module. But there
are some common attribuites that are shared amog some modules. So we
decided to store all user attributes in a central place so all modules can share
them without the need for the module programmer to store them seperated
for themselfs. This does not only make it more easy for the programmer
but also for the user who then only needs to enter his/her surename, etc. in
one place and not inside every module again. To make it as easy as possible
for the module programmer to access these attributes there is only one API
call to get the needed attribute value for a specific user. They are accessible
via attribute tags. (NOTE: there is no system implementet for the module
programmer to specify wich attribute tags are required, optional or used at
all. This will follow soon!)

5

2 Directory Structure

The name of your module is also the name of the directory inside the modules
directory. You should prefix the modules name with you initials or some
random letters of you choice. You don’t want to create a module called
news or poll because a module name has to be unique inside of a Metaportal
installation.

2.1 General

To provide a valid module which is loadable into MetaPortal you have to
take care about the directory structure and some files inside your modules
directory which are parsed and checked for valid syntax. If the directorys
ore files are not in the described format you won’t be able to load it into
MetaPortal.

2.2 root

The root of your modules directory should contain only a few files and the
directorys describes below. Of course you can place as many files here as
you want (eg. license files...) but you need at least the ones describes in the
Files section below.

2.3 share/

This folder is somehow special and only a few module will need it. It can
contain things that need to be directly accessible and are not dependent by
the theme or container a module runs in. It will be symlinked into every
container of every organization wich uses the module. An example on what
might be in there are user uploaded content for eg. a gallery. Use it with
care and don’t confuse it with the graphics/ dir which DOES depend and
thus cachanges togeth with themes!

2.4 themes/

Everything the depends on a theme is located inside this directory. It con-
tains one dir for every theme that is explicitly supported by the module. It
the framework is using a theme that is not supported by the module it will
use the default theme defined in your module.conf file (described below).

2.4.1 themes/<THEMENAME>/

Inside a directory named after a theme(eg. metaportal or coldice) resides
data with may change depending on the used theme. This includes of course
the templates files and the language definitions for the templates. Also the

6

graphics dir wich contains all the funky buttons and images that are part
of a theme.

2.4.2 themes/<THEMENAME>/graphics/

The directory contains all the images, buttons,etc, your module is using
during runtime. This includes everything that needs to be accessed directly.
Images are a good example of something that can not be included into
a template but have to be in a directory that is accessible by the clients
browser. When a module is activated within an organization the framework
takes care about symlinking the content of this folder into the apropriate
directories in all the containers used by the organization. So you don’t have
to care about placing the links to your graphics by yourself.

2.4.3 themes/<THEMENAME>/lang/

Here you can store the language files to support different languages inside
your module. The format of them is Smarty Config File style. The naming
convention for them is [LANGUAGE].conf(eg. en.conf or de.conf).

2.5 includes/

Here you should place your sourcecode!

2.6 sql/

Here you should place .sql files wich are required to initialize the tables your
module requires to run.

2.7 libs/

In this directory you should place all class files. If other modules want to use
your classes and they specify this in their module.conf file, every file in your
libs/ dir will be included when the other module is loaded. So there should
be no self running code but classes and plain functions you want to share
with other module coders. If you have sourcecode that produces output
or classes you don’t want to share for some reasons place them into the
includes/ directory. As soon as your libs are loaded into the environment of a
different module, thelibs of your module listed in the deps line of your config
file will also be loaded to satisfy your own requirements. The framework also
takes care about dependency loops and cross dependecys.

7

3 Files

MetaPortal uses some files inside a modules root directory to interact with
the frameworke itself. In this chapter the mandatory and optional files are
explained by describing their functionality, content and syntax.

3.1 module.php

This is your main sourcecode file. It is included by the framework if you
module is called and should contain the very basic runtime code for your
module.

3.2 module.conf

In this file some variables are defined to provide the framwork with a few ba-
sic informations about how to deal with the module and its themes/languages.

3.2.1 mod version

Just your module version. (e.g. mod version=”1.0”) Currently not used by
the framework.

3.2.2 default lang

Defines a default language with should allways work. (e.g. default lang=”de”)
Is used if the language requested by the user is not in your languages list.
Has to be in 2 char ISO notation (e.g. de or en).

3.2.3 languages

A comma seperated list of all languages supported by your module. The
has to be in 2 letters ISO. (e.g. languages =”de, en, no”)

3.2.4 default theme

Choose a theme wich should be used as default if the desired theme is not
available in your module and thus not present in your themes/ directory.
(e.g. default theme=”metaportal”)

3.2.5 deps

This is a comma seperated list of module names. All files from the modules
libs/ directorys will be included. So if you need classes from other modules,
place the name of the module here and all dependencies will be (recoursively)
included. (see about description of the libs/ directory for details) (e.g.
deps=”zx foo, xy bar”)

8

3.3 roles.conf

In this file you should list all roles needed by your module. The format is
like a regualar config file with the role tag as the variable name and a human
readable description as its content with one role per line (eg. ADMIN=The
Admin Role).

9

4 Framework Objects and Classes

The framework itself provides you with instanciated objects wich provide
you most of the basic features you need to rapidly develop and deploy a new
module.

4.1 $GLOBALS[’mp log’]

This object is an global instance of the Log class. The mp log objects
provides a convenient way to log all the stuff you want to to without the
need for you to take care about the loggin media. We now describe how to
use the essential methods of the object.

4.1.1 $GLOBALS[’mp log’]→log($level, $source, $text)

This is the primary interface method for the log object. It will print a log
sting to the specified log facility. At the moment this could be a plain textfile,
syslog or a mysql table. The first argument ist the log level. MetaPortal
uses the same log levels as a normal syslog and provides symbolic constants
for the levels which are explained later in this guide. This provides you
with the capability to decide if a log entry is made only for debugging
purposes or for a mission critical condition. As the second argument you
should provide the source of the log entry. In most cases this is something
like php filename/classname/methodname to identify where the log entry
originated from. The third argument is the plain text you want to write
into the log file.

Sample:

$GLOBALS[’mp_log’]->log(MP_LOG_CRIT, ’MPUser::createNew()’, ’Unable to create new user’);

4.2 $GLOBALS[’mp sql’]

This global SQL object is used to access the administrative tables of Meta-
Portal. If your tables reside in the same databes you should think about
using it to process your queries. The object takes care of load balancing the
queries if there are more databases to be read from. If you run a query with
this object it also keeps internal statistics and does basic profiling of your
querys. Currently it only counting all qerys issued with seperated read-only
and read-write querys and it traks how many unique querystrings you is-
sued. So you maybe want to look if you have redundant querys and tune
them with a little bit more intelligence insight your classes to avoid issueing
the same query more than once if it could be avoided with eg. caching.

10

4.2.1 $GLOBALS[’mp sql’]→readQuery($query, $retval)

This method should be used to issue read onyl querys. The first argument
is the query, the second is passed by reference and contains the result. It
is not a regular mysql result but a DB Result set from the pear databased
framework. (see http://pear.php.net for further informations on how to
deal with this kind of result). If the call fails for some critical reason(eg.
if the tables/fields do not exist) the application dies and produces a log
entry as well as debug output on screen. The default fetchmode is set to
be an associative array and if you want to change it please refer to the pear
dokumentation.

Sample:

$sql = ’SELECT ‘login‘ FROM ‘mp_users‘’;

$GLOBALS[’mp_sql’]->readQuery($sql, $result);

while($row = $result->fetchRow()) {

echo ’Login: ’.$row[’login’].’
’;

}

4.2.2 $GLOBALS[’mp sql’]→writeQuery($query)

The method for queries who do writing operations on the database. The only
argument to it is your query string. It returns true if the query was issued
without mayor problems and dies if the query goes wrong. (In most cases you
can also issue read querys through this link but you realy shouldn’t!) Like
the read query the write query lets the whole applikations die on a critical
error and produces an entry in the error log and on screen. The default
fetchmode is set to be an assocciative array and if you want to change it
please refer to the pear dokumentation.

Sample:

$sql = ’UPDATE ‘mp_users‘ SET ‘login‘ = ’joe’ WHER ‘id‘ = ’3’ LIMIT 1’;

$GLOBALS[’mp_sql’]->writeQuery($sql);

4.2.3 $GLOBALS[’mp sql’]→countQuery($query, $retval)

This call is only for COUNT() queries. The first argument is the query, the
second one is your result. the result should in most cases be a interger ≥
0. If a cirical failure happens the whole application dies like the read and
write queries.

Sample:

$sql = ’SELECT COUNT(‘id‘) FROM ‘mp_users‘ WHERE ‘login‘ LIKE ’a%’’;

$GLOBALS[’mp_sql’]->countQuery($sql, $result);

echo ’Logins starting with the letter ’a’: ’.$result.’
’;

11

4.3 $GLOBALS[’mp session’]

This is a very important object, because it provides all kinds of information
related to the current session as organisation id, user id or the current session
state.

4.3.1 $GLOBALS[’mp session’]→getOrgId()

Returns the Organization ID of the current active organization. Should
always be an integer.

Sample:

$orgId = $GLOBALS[’mp_session’]->getOrgId();

echo ’Current Organization ID is: ’.$orgId;

4.3.2 $GLOBALS[’mp session’]→getUserId()

Returns the User ID if the session is authenticated and the user is logged
in. If not it returns false. This is the case when a session is in the states
unauthed or authing cuz at this time the user is not logged in.

Sample:

$userId = $GLOBALS[’mp_session’]->getUserId();

if($userId == false) {

echo ’No User logged in’;

} else {

echo ’Current UserId is: ’.$userId;

}

4.3.3 $GLOBALS[’mp session’]→getStatus()

Returns a string with the current session state. The value should be authed,
unauthed or authing. If it returns false there is something very wrong with
the framework itself.

Sample:

$sessStatus = $GLOBALS[’mp_session’]->getStatus();

switch($sessStatus) {

case ’authed’:

echo ’Session is authed!’;

break;

case ’unauthed’:

echo ’Session is unauthed!’;

break;

case ’authing’:

echo ’Session is currently authing’;

break;

default:

echo ’Something fishy is going on here!’;

}

12

4.3.4 $GLOBALS[’mp session’]→hasRoleTag($tags, [$modname])

This method returns true if the current session has access to the role tag or at
least on of the roletags specified in the first argument. If not false is returned.
The first argument may be a singe roletag ar an array of roletags. The second
argument is optional. If you leave it empty the roletags are assumed to be
existend in the current selected module context. With providing the name of
a different module as the second argument you have to oppotunity to check
roles for different modules other than the current active one. The second
argument is mostly used by plugins who don’t have own roletags but it also
works inside of modules.

Sample:

if($GLOBALS[’mp_session’]->hasRoleTag(array(’ADMIN’), ’usr_admin’)) {

echo ’Current user has roletag ’ADMIN’ for module ’usr_admin’;

} else {

echo ’Current user does not have roletag ’ADMIN’ for module ’usr_admin’;

}

4.3.5 $GLOBALS[’mp session’]→getAction()

This method returns the last value of a post or get for data[action]. At
the moment it is persisten to the session until 1. the module is changed 2.
another data[action] is posted or getted. But this maybe subject to changed
in the neaf futue. So depend to much on its behavior...

Sample:

$action = $GLOBALS[’mp_session’]->getAction();

echo ’Last value of data[action] since last change is: ’.$action;

4.4 $GLOBALS[’mp user’]→getAttribute($tag)

This returns the users values saved for the specified tag. If the user hasn’t
entered a value for the tag yet but it is present inside the organisation the
organisations default value for the tag is returned. If the requested tag is
not present at all in the organisation false is returned.

Sample:

$email = $GLOBALS[’mp_session’]->getAttribute(’EMAIL’);

echo ’The current users EMail address is: ’.$email;

4.5 $this

Your module.php is included into a Module-object. So you can use all meth-
ods of it with just using the $this object.

13

4.5.1 $this→getIncPath()

This functions returns the path to your includes/ -folder inside your module
dir WITH a trailing slash. So use it if you want to include more files into
your module which reside inside the includes/ -dir.

Sample:

$incPath = $this->getIncPath();

require($incPath.’my_include.inc.php’);

4.5.2 $this→getGfxUrl()

This method returns a path to your graphics directory relative to your web-
servers root. You can use this if you want to generate links to graphics
from within your sourcecode. Due to the fact that the framworks generates
dynamic containers als thus compleately different URLs to the graphics are
needed to access them you can not hardcode any paths in your code. The
framework also takes care about modifiying the paths in accodance to the
theme used with placing symlinks to the right placed in you module dir.

Sample:

$gfxUrl = $this->getGfxUrl();

$content = ’’;

4.5.3 $this→getGfxPath()

This return the absolute path to your graphics dir on the machine. The
path returned is also dependedn on the current selected theme!

Sample:

$gfxPath = $this->getGfxPath();

unlink($gfxPath.’my_image.jpg’);

4.5.4 $this→getShareUrl()

Like the getGfxUrl() method it returns an URL path but this time to the
share director.

4.5.5 $this→getSharePath()

Like the getGfxPath() method it returns the absolute filesystempath to the
share/ directory for your module.

4.5.6 $this→getLang()

Returns the lang used for the module. This might be one of the values
defined in the module.conf file in the languages variable. Useful to decide
inside of php code which language to use if you have dynamic but language

14

depended sourcecode which you can’t place directly inside the templates.
Language values allways have to be formatted in 2 character ISO codes!

4.6 $smarty

The $smarty-object is in local scope to your modules.php file. It is an
instance of the ModulesSmarty-class, an extension to the regular Smarty-
class from the smarty temaplte engine. You can access all the methods
provided by the engine like assign, etc. See http://smarty.php.net for further
documentaion.

4.7 Misc class

Inside the Misc class you can find some useful functions for your module
which are not part of any other class. All of them are public which means
you don’t have to instanciate the class. You can and should call every
function with the the syntax Misc::function().

4.7.1 Misc::varEval($variable, $pattern)

This is a function to evaluate a variable against a regular expression. First
argument is the variable and the second is the regex pattern to evaluate
against. Its a nice thing because it takes care about logging every evaluation
and also if an evauation fails. If the patterns match the function returns
true else false. MetaPortal provides you with a couple of predefined symbolic
constants for variable evaluation. You should use them where it makes sense
because it’ll make your source more readable and if they are updated you
don’t need to update your sourcecode. The constants are describes later on
in this document.

Sample:

if(Misc:varEval($userId, MP_VAR_INTEGER) === false) {

echo ’The userId has to be an integer!’;

} else {

echo ’OK, userId seeme to be an integer.’;

}

15

5 Variables

There are some special variables which provide you with content or just
should be avoided because they carry critical information through the Met-
Portal framework.

5.1 MetaPortal

Variables described here have special meanings an thus should not be used
unless you intend to change them for some good reason. They are have valid
scope inside your php code.

5.1.1 $data[module]

If you want to switch to another module you can post or get the $data[module]
variable and fill it with the name of the module you want to load. If the
users have not the required permissons for the module, a message will be
displayed.

Sample:

Load MyModule

5.2 Smarty

Here are some variables wich are present within your smarty templates for
your convenience. Use them but don’t change them unles you know what
you are doing!

5.2.1 {$PHP SELF}

This is pretty much the same like in PHP itself. In fact is a copy of its
contents.

Sample:

<form action=’{$PHP_SELF}’ method=post>

[...]

</form>

5.2.2 {$GFX DIR}

Points to the graphics dir URL within your module. It is allways relative
to your webroot. So you don’t have to worry about the location(s) of your
graphics. Just use this dynamic path to them.

Sample:

<form action=’{$PHP_SELF}’ method=post>

[...]

</form>

16

5.2.3 {$LANG}

Usefull for multi language support. Contains one of the languages you have
defined in your modules.conf file.

Sample:

{include file=’template_‘$LANG‘.tpl’}

5.2.4 {$SHARE DIR}

Points to the shared dir URL within your module. It is allways relative to
your webroot. So you don’t have to worry about the location(s) of your
shared files with a container. Just use this dynamic path to them.

Sample:

<script src="{$SHARE_DIR}/javascriptstuff.js" type="text/javascript">

5.2.5 {$LANG}

Usefull for multi language support. Contains one of the languages you have
defined in your modules.conf file.

Sample:

{include file=’template_‘$LANG‘.tpl’}

5.3 Forbidden Variables

Here is a list of Variables wich should not be used by you. Most of them are
in global scope and can safely be used in your local module.php scope

5.3.1 mp *

You should not use the prefix mp for any of your variables because it is
used by metaportal itself!

17

6 JavaScript

There are a few very minimalistic js functions available. They provide some
functionality that may be helpfull in daily use in your templates. All pro-
vided functions and variables are prefixed with mp.

6.1 Functions

Functions provided by the MetaPortal theme.

6.1.1 mpAskLink(link, question)

This is just a little protective helper if you have critical links and you don’t
want to write an extra page like “Are you sure you want to click this Link?”
for it. It pops up a confirmation question and only if the user then presses
the ’OK’ button the link will be followed. Very usefull for “delete” links or
stuff like that. First argument is the link you want to follow if user clicks
’OK’. Seconf argument is the question you want to ask the user.

Sample:

delete

6.1.2 mpProtectSubmit(button, [caption])

This function intends to prevent dubble submission of forms that occure
when a user dubbleclicks on form submit buttons. This can be very annoy-
ing. So what the function does is it replaces itself with the mpBlockSubmit
function and disables the button. So every browser should at least under-
stand one of the two methods of disableing the button. You just have to
add the function to the onClick event of you submit button to make it work.
The first argument is the button object you want to protect (usualy if placed
inside the onClick this just the this object). Second argument is optional
and may contain the value (caption) that is placed on the button after the
click (e.g. ’please wait’ or ’processing...’).

Sample:

<input type=’submit’ onClick=’return mpProtectSubmit(this, ’please wait...’)’ />

6.1.3 mpBlockSubmit

This function should not be used anywhere. Its only purpose is to replace
mpProtectSubmit as soon as it is called to produce an error if it is called
again.

6.2 Variables

Variables provided by the MetaPortal theme.

18

6.2.1 mpFormErrorMsg

This is the default errormessage that will be outputted if mpBlockSubmit is
called.

19

7 Constants

Here are defined constants which can be used if you think they are of any
use. If not... well they are defined anyway... so use them or not... but don’t
try to redefine them!

7.1 Eval constants

Here are a few constants to use with the Misc::varEval() function. They
provide you with some default regular expressions so if you want to change
them you just need to change the constants.

7.1.1 MP VAR USERNAME

Per default a username has to be alphanumeric with at least 2 and a maxi-
mum of 25 charakters.

7.1.2 MP VAR ORGNAME

Per default an organization name can be alphnumeric plus the . and has to
be at least 3 and at maximum 25 charakters long.

7.1.3 MP VAR PASSWORD

Per default password can be any character but have to be at least 4 charac-
ters in size.

7.1.4 MP VAR INTEGER

Just checks if a variable contains only and at leaset one digit.

7.1.5 MP VAR MODNAME

A module name can per default only contain alphanumeric characters with
at leaset 3 and a maximum of 25 characters.

7.1.6 MP VAR ROLETAG

A roletag has to contain just alphanumeric characters. Its size is between 5
and 50 characters long.

7.2 Log constants

These symbolic constants should be used in context with the logging facility
of MetaPortal do decide how important an event you want to log is.

20

7.2.1 MP LOG DEBUG

Debug-level message

7.2.2 MP LOG INFO

Informational message

7.2.3 MP LOG NOTICE

Normal, but significant, condition

7.2.4 MP LOG WARNING

Warning conditions

7.2.5 MP LOG ERR

Error conditions

7.2.6 MP LOG CRIT

Critical conditions

7.2.7 MP LOG ALERT

Action must be taken immediately

7.2.8 MP LOG EMERG

System is unusable

21

8 Appendix

8.1 Sample module.php

<?php

/**

* sample module

*

* little module that does nothing but printing out a few things

*

* @author Thorsten Kunz

* @copyright Copyright © 2003, Thorsten Kunz

* @license http://www.bytecrash.net/metaportal/LICENSE BSD style license

* @package some_package

* @subpackage some_subpackage

* @version v0.1

*/

//put this protective code sniplet at the begining of EVERY

//.php file you have in your module! It prevents the possibility

//to include the files directly wich might have a serious security

//impact in some cases!

if(!isset($GLOBALS[’mp_config’][’caller_name’]) ||

!eregi($GLOBALS[’mp_config’][’caller_name’], $_SERVER[’PHP_SELF’])) {

die(‘‘This file may not be accessed directly!’’);

}

//at this point you should check things like userpermissions and in case

//your module should only be available to registered userd do a check

//if the session is authed here, too!

if($GLOBALS[’mp_session’]->getStatus() != ’authed’) die(‘‘holy shit!’’);

//get the path for the include directory. not needed but makes the code

//a little more readable if you have many includes

$myIncludePath = $this->getIncPath();

//switch for the last action submitted via data[action]

switch($GLOBALS[’mp_session’]->getAction()) {

case ’hello’:

print ’Hello World!
This is sample module speaking...’;

break;

case ’complex_hello’:

//require a file that has some functions and code in it

require($myIncludePath.’file_with_complex_hello_code_from_include_dir.inc.php’);

//now display a smarty template to generate output from

$smarty->display(’template_file_to_display_complex_hello_code.tpl’);

break;

default:

print ’Well, you did not specify a valid action... but hello anyway!’;

}

?>

22

